PROBABILITÉS ET VARIABLES ALÉATOIRES FINIES.

ESPACES PROBABILISÉS

Exercice 1

Dans chacune des situations données, énoncer l'événement

- Dans une classe, on choisit deux élèves au hasard. $A = \ll$ les deux élèves sont des filles »
- À une loterie, on achète trois billets. $B = \ll$ l'un des trois billets achetés au moins est gagnant ». C = « deux billets au maximum sont gagnants. ».

Exercice 2

Soit $n \ge 2$ un entier. Une urne contient trois boules rouges, deux boules noires et n boules blanches. On effectue un tirage simultané de deux boules au hasard, avec tirages équiprobables.

- 1. Calculer la probabilité \mathbb{P}_n d'obtenir un tirage unicolore.
- 2. Calculer la probabilité \mathbb{Q}_n d'obtenir un tirage bicolore.
- 3. Trouver la valeur de n pour laquelle la probabilité de tirer deux boules blanches vaut $\frac{1}{6}$. Que vaut alors \mathbb{P}_n ?

Exercice 3

On considère un jeu de 52 cartes. On retire 10 cartes de ce jeu. Parmi les cartes restantes, on prend 5 cartes.

- 1. Quelle est la probabilité d'avoir l'as de trèfle parmi ces 5 cartes?
- 2. Quelle est la probabilité d'avoir seulement deux valeurs parmi les 5 cartes?
- 3. Quelle est la probabilité d'avoir cinq valeurs différentes?

Exercice 4

Soit $n \ge 2$ un entier. On lance n pièces parfaitement équilibrées. On note :

- événement \mathscr{A} : "on obtient face au plus une fois"
- ullet événement ${\mathscr B}$: "on obtient face au moins une fois et pile au moins une fois".

Montrer qu'il existe une seule valeur de n pour laquelle les événements \mathscr{A} et \mathscr{B} sont indépendants.

Exercice 5

Soient $n \geqslant 3$ un entier, puis n personnes jouant chacune à un seul lancer d'une pièce parfaitement équilibrée.

- 1. Modéliser l'expérience par la donnée d'un univers Ω et d'une probabilité ₽.
- 2. Quelle est la probabilité qu'une personne exactement obtienne un résultat différent de toutes les autres?

Exercice 6

On considère un dé A dont les faces sont numérotées de 1à 6. On considère également 7 autres dés D_1, \dots, D_7 tels que pour tout $i \in \{1, \dots, 7\}$, le dé D_i possède (i-1) faces blanches et (7-i) faces noires.

On suppose que le dé A et les 7 dés D_1, \dots, D_7 sont parfaitement équilibrés.

On lance d'abord le dé A:

- si le résultat i du lancer est 2,3,4,5 ou 6, on choisit le dé D_i correspondant au numéro i du lancer.
- si le résultat du lancer est 1, on lance de nouveau le dé A.
- si le résultat du deuxième lancer est 1,2 ou 3, on choisit le dé D_1
- si le résultat du deuxième lancer est 4,5 ou 6, on choisit le dé D_7 .

On a ainsi choisi de cette manière un dé D_i . On lance alors le dé D_i successivement plusieurs fois de suite, les lancers étant indépendants les uns des autres.

- 1. Calculer la probabilité qu'il sorte une face noire au premier lancer.
- 2. Sachant qu'il est sorti une face noire aux deux premiers lancers, calculer la probabilité qu'il sorte une face noire au troisième lancer.
- 3. Calculer la probabilité \mathbb{P}_n qu'il sorte une face noire au $n^{\grave{e}me}$ lancer sachant que les lancers précédents, il est toujours sorti une face noire.
- 4. Calculer $\lim_{n\longrightarrow +\infty}\mathbb{P}_n$ et interpréter le résultat. \bigcirc

Exercice 7

Soient $(\Omega, \mathscr{F}, \mathbb{P})$ un espace probabilisé, puis $(A_n)_{n \in \mathbb{N}}$ une suite d'événements.

- 1. Exprimer sous forme d'intersections ou de réunions d'événements A_n les événements suivants :
 - ullet B= "les événements A_n se réalisent tous à partir d'un certain rang"
 - C = "une infinité d'événements A_n se réalisent"

2. premier lemme de Borel-Cantelli

On suppose que la série $\sum_{n=0}^\infty \mathbb{P}(A_n)$ est convergente. Montrer que $\mathbb{P}(C)=0$. On pourra utiliser le fait que la probabilité d'une réunion dénombrable est inférieure à la somme des probabilités.

3. deuxième lemme de Borel-Cantelli

On suppose que la série $\sum_{n=0}^{+\infty}\mathbb{P}(A_n)$ est divergente et que les événements A_n sont mutuellement indépendants. Montrer que $\mathbb{P}(C)=1.$ On pourra passer à l'événement contraire et utiliser le fait que si F_n sont des événements décroissants pour l'inclusion, alors $\mathbb{P}(F_n)$ converge vers $\mathbb{P}\left(\bigcap_{n\in\mathbb{N}}F_n\right)$.

4. Un singe immortel devant un ordinateur tape aléatoirement sur les touches. Montrer qu'à un moment donné, il écrira exactement l'énoncé de cet exercice, ainsi que sa correction.

Exercice 8

1. Soit $n\in\mathbb{N}^*$. Déterminer la probabilité p_n qu'une fonction $f:\{1,\cdots,n\}\longrightarrow\{1,\cdots,n\}$ prise au hasard vérifie :

$$f \circ f = f$$

2. Calculer $\lim_{n \longrightarrow +\infty} p_n$.

Exercice 9

Soient k et n dans \mathbb{N}^* .

- 1. On range k objets dans n tiroirs, les rangements étant indépendants et aléatoires. Quelle est la probabilité que ces objets se retrouvent dans des tiroirs distincts.
- 2. À partir de combien de personnes dans un groupe, la probabilité que deux d'entre elles au moins aient la même date d'anniversaire est-elle plus grande que 50%, est-elle plus grande que 90% [on négligera les années bissextiles.]
- 3. Soit t>0. On prend $k=[t\,\sqrt{n}]$ et on note p_n la probabilité que les k objets se retrouvent dans des tiroirs distincts.
 - (a) Montrer que : $\forall x \in \left[0,\frac{1}{2}\right]$, $-x-x^2 \leqslant \ln(1-x) \leqslant -x$.
 - (b) En déduire : $\lim_{n \longrightarrow +\infty} p_n$.

Exercice 10

Un chat a trois passions dans la vie : dormir, manger et jouer, activités qu'il pratique toutes les 5 minutes :

- ightarrow après 5 mins de repas, il continue à manger avec une probabilité de $\frac{1}{2}$ et sinon il se met à jouer
- ightharpoonup après 5 mins de jeu, il mange avec une probabilité de $\frac{1}{4}$ et sinon il va dormir
- ightharpoonup après 5 mins de sieste, soit il continue à dormir avec une probabilité de $\frac{3}{4}$, soit il va manger.

Un matin, ce chat se lève et passe les 5 premières minutes à prendre son petit-déjeuner. On note m_n , d_n et j_n , les probabilités que le chat mange, dorme ou joue dans la tranche horaire [5n,5n+5].

- 1. Calculer m_n , d_n et j_n , à l'aide d'une matrice.
- Calculer les limites de ces probabilités. Interpréter le résultat.

Exercice 11

Une particule se trouve à l'instant 0 au point d'abscisse $a \in \{0,\cdots,N\}$ sur un segment gradué de 0 à $N\geqslant 1$.

À chaque instant, elle fait un bond de +1 avec la probabilité $p \in \left]0, \frac{1}{2}\right[$ ou un bond de -1 avec la probabilité q = 1 - p. Le processus se termine lorsque la particule atteint une des

Le processus se termine lorsque la particule atteint une des extrémités du segment.

- 1. Écrire un algorithme en pseudo-code qui simule cette marche aléatoire.
- 2. On note u_a la probabilité pour que la particule partant de a, le processus s'arrête en 0.
 - (a) Que vaut u_0 et u_N ?
 - (b) Montrer que si 0 < a < N, alors $u_a = p \ u_{a+1} + q \ u_{a-1}$.
 - (c) En déduire l'expression exacte de u_a .
- 3. On note v_a la probabilité pour que la particule partant de a, le processus s'arrête en N. Reprendre les questions précédentes.
- 4. Calculer $u_a + v_a$. Que peut-on en déduire?

Exercice 12

Soit $n \ge 1$ un entier. On choisit de manière équiprobable un entier p dans $\{1, \dots, n\}$.

Pour tout entier $m\in\{1,\cdots,n\}$, on note A_m l'événement : « l'entier m divise p ». On note enfin p_1,\cdots,p_r les diviseurs premiers de n.

- 1. Exprimer l'événement $B: \ll p \wedge n = 1$ » en fonction des A_{p_k} .
- 2. Pour tout $m \in \{1, \cdots, n\}$, calculer $\mathbb{P}(A_m)$.
- 3. Montrer que les événements A_{p_1}, \cdots, A_{p_r} sont mutuellement indépendants.
- 4. Calculer $\mathbb{P}(B)$.
- 5. On note $\varphi(n) = \operatorname{Card}((\mathbb{Z}/n\mathbb{Z})^*)$. Montrer la formule :

$$\varphi(n) = n \prod_{k=1}^{r} \left(1 - \frac{1}{p_k}\right).$$

Exercice 13

Une personne porte à tout moment une boîte d'allumettes dans la poche gauche et une autre dans celle de droite. Chaque boîte contient initialement n allumettes.

Cette personne choisit de manière équiprobable et indépendante une des deux poches et retire une allumette de la boîte correspondante et découvre à un moment donné qu'une des boîtes est vide.

1. Soit $k \in [0, n]$. Quelle est la probabilité qu'il reste k allumettes dans l'autre boîte?

2. En moyenne, lorsque n=6, combien reste-t-il d'allumettes dans l'autre boîte?

Exercice 14

Deux joueurs A et B jouent à « pile » ou « face », la probabilité d'avoir « pile » est égale à $p \in]0,1[$. Initialement, le capital de A est égal à n et le capital de B est égal à s-n, avec $0 \leqslant n \leqslant s$ deux entiers.

Le joueur A parie toujours sur « pile » et le joueur B parie toujours sur « face ». Le perdant donne un euro à l'autre. Le jeu s'arrête lorsque l'un des joueurs n'a plus d'argent. Quelles sont la probabilité qu'a A de gagner? qu'a B de gagner?

VARIABLES ALÉATOIRES

Exercice 15

Soit $n\geqslant 3$ un entier. On dispose de n souris qui se déplacent aléatoirement dans un enclos comportant 3 cages. Les choix suivent une probabilité uniforme sur les 3 cages et chaque cage peut contenir n souris. Chaque souris vient se loger dans une cage.

On note X égal au nombre de cages restées vides. Donner la loi de X et son espérance.

Exercice 16

Soient deux entiers k et n tels que $1 \leq k \leq n$.

On considère n cartes numérotées de 1 à n. Un joueur découvre les cartes les unes après les autres : on note X la valeur maximale obtenue durant les k premières cartes.

- 1. Déterminer la loi de X.
- 2. En déduire que si $0\leqslant p\leqslant q$ sont deux entiers, alors $\sum_{k=p}^q\binom{k}{p}=\binom{q+1}{p+1}.$
- 3. Calculer E(X).

Exercice 17

Deux joueurs A et B jouent avec deux dés équilibrés à six faces selon le protocole suivant :

- \triangleright A lance les dés
- \triangleright si la somme est au moins 8, alors A gagne
- \triangleright sinon, B lance les dés à son tour et si la somme est plus grande que 5 alors B a gagné
- > on recommence si personne n'a gagné.
- 1. Calculer la probabilité que le jeu ne finisse jamais.
- 2. Quelle est la probabilité que le joueur A gagne? que le joueur B gagne?
- 3. On note X le nombre de parties jouées. Déterminer la loi de X, puis son espérance et son écart-type.

Exercice 18

Une urne contient initialement une boule noire et une boule blanche et on répète l'expérience aléatoire suivante :

• on tire une boule

• on la remet dans l'urne et on ajoute une boule de la même couleur.

Ce modèle d'urne est connu sous le nom d'urne de \mathbf{Polya} . Pour tout $k \in \mathbb{N}$, on note N_k le nombre de boules blanches dans l'urne après k tirages.

Montrer que pour tout $k \in \mathbb{N}$, $N_k \sim \mathscr{U}_{\llbracket 1,k+1 \rrbracket}$.

Exercice 19

On s'intéresse à un jeu dans lequel, sur un total de n numéros, g sont choisis à l'avance comme gagnants par le meneur de jeu et connus de lui seul. On suppose que : $1\leqslant g\leqslant \frac{n}{3}$.

Dans la première phase de jeu, le joueur tire au hasard g numéros, après quoi le meneur dévoile g numéros perdants, parmi les n-g numéros que le joueur n'a pas tirés.

Dans la deuxième phase de jeu, le joueur a le choix entre deux stratégies :

- ullet stratégie 1 : il garde les g numéros qu'il a tirés
- stratégie 2: il échange les g numéros qu'il a tirés contre g nouveaux numéros tirés au hasard parmi les n-2g numéros n'ayant pas été tirés ni dévoilés.
- 1. On note G_i le nombre de numéros gagnants obtenus à l'issue de la première phase. Déterminer la loi de G_1 , puis son espérance.
- 2. On étudie spécifiquement dans cette question la stratégie 2. On note G_2 le nombre de numéros gagnants obtenus à la fin du processus.
 - (a) Déterminer la loi conditionnelle de G_2 sachant $\{G_1=k\}$.
 - (b) En déduire l'espérance conditionnelle $\mathbb{E}_k(G_2)$ de G_2 calculée avec la probabilité conditionnelle $\mathbb{P}(\cdot \mid G_1 = k)$.
 - (c) Montrer l'égalité :

$$\mathbb{E}(G_2) = \sum_{k=0}^{g} \mathbb{E}_k(G_2) \cdot \mathbb{P}(G_1 = k).$$

(d) Montrer que :

$$\mathbb{E}(G_2) = \frac{g^2(n-g)}{n(n-2g)}.$$

3. Comparer les deux stratégies.

Exercice 20

Soit $n \in \mathbb{N}^*$. Une urne contient 2n boules numérotées de 1 à 2n. On tire sans remise les boules de l'urne et on s'arrête lorsque toutes les boules impaires ont été enlevées.

- 1. Calculer la probabilité que les boules $1, 3, \dots, 2n-1$ soient sorties dans cet ordre et consécutivement.
- 2. Calculer la probabilité que les boules $1,3,\cdots,2n-1$ soient sorties dans cet ordre mais pas forcément consécutivement.
- 3. On note X la variable aléatoire donnant le nombre de tirages nécessaires pour cette expérience. Donner $\mathbb{E}(X)$.

Exercice 21

Une urne contient n boules dont p boules sont blanches. On pioche simultanément s boules de l'urne et on compte le nombre X de boules blanches piochées.

- 1. Déterminer la loi de X ainsi que son espérance.
- 2. Interpréter les résultats lorsque les entiers n et p sont grands avec $\rho=\frac{p}{n}\in]0,1[$.
- 3. Pour tout $k\in [\![1,p]\!]$, on note l'événement $A_k:$ « la $k^{\grave{e}me}$ boule blanche a été tirée » .
 - (a) Simplifier $\sum_{k=1}^p \mathbf{1}_{A_k}$.
 - (b) En déduire $\mathbb{E}(X)$ puis V(X).

VECTEURS ALÉATOIRES FINIS

Exercice 22

On désigne par n un entier naturel non nul et par p un nombre strictement compris entre 0 et 1.

On lance n fois une pièce de monnaie donnant pile avec une probabilité égale à p et face avec une probabilité égale à q=1-p.

On appelle k-chaîne de pile, une suite de k lancers consécutifs ayant tous donné pile, cette suite devant être suivie d'un face ou être la dernière suite du tirage.

Pour tout $k\in\{1,\cdots,n\}$, on note Y_k la variable aléatoire égale au nombre total de k-chaînes de pile obtenues au cours des n lancers.

Pour tout $k\in\{1,\cdots,n\}$, on pourra noter P_k l'événement « on obtient pile au $k^{\grave{e}me}$ lancer ».

Par exemple, avec n=11, si l'on a obtenu $P_1P_2F_3F_4P_5P_6P_7F_8P_9F_{10}P_{11}$, alors $Y_1=2$, $Y_2=1$ et $Y_3=1$.

Le but de cet exercice est de déterminer pour tout $k\in\{1,\cdots,n\}$ l'espérance de Y_k notée $E(Y_k)$.

- 1. Déterminer la loi de Y_n et donner $E(Y_n)$.
- 2. Montrer que $\mathbb{P}(Y_{n-1}=1)=2qp^{n-1}$ et donner $E(Y_{n-1})$.
- 3. Dans cette question, k désigne un entier dans $[\![1,\cdots,n-2]\!]$.

Pour tout $i \in [\![1,\cdots,n]\!]$, on note $X_{i,k}$ la variable aléatoire qui vaut 1 si une k-chaîne de pile commence au $i^{\grave{e}me}$ lancer et qui vaut 0 sinon.

- (a) Calculer $\mathbb{P}(X_{1,k}=1)$.
- (b) Soit $i\in [\![2,\cdots,n-k]\!]$. Montrer que $\mathbb{P}(X_{i,k}=1)=q^2p^k$.
- (c) Montrer que $\mathbb{P}(X_{n-k+1,k}=1)=qp^k$.
- (d) Exprimer Y_k en fonction des variables $X_{i,k}$ puis déterminer $E(Y_k)$.

Exercice 23

Soit $(X_n)_{n\in\mathbb{N}^*}$ une suite de variables aléatoires mutuellement indépendantes et de même loi que X. On suppose que la variable X^4 admet une espérance. On pose pour tout $n\in\mathbb{N}^*,\,Y_n=X_n-\mathbb{E}(X)$ et $S_n=Y_1+\cdots+Y_n$.

1. Soit $\varepsilon > 0$. Montrer que :

$$\forall n \in \mathbb{N}^*, \ \mathbb{P}\left(\left|\frac{S_n}{n}\right| \geqslant \varepsilon\right) \leqslant \frac{1}{\varepsilon^4} \cdot \frac{\mathbb{E}(S_n^4)}{n^4}.$$

- 2. Montrer que la série $\sum_{n=1}^{+\infty} \frac{\mathbb{E}(S_n^4)}{n^4}$, est convergente. On montrera après développement que $\mathbb{E}(S_n^4) = \mathscr{O}(n^2)$.
- 3. En utilisant le premier lemme de Borel-Cantelli, en notant pour tout $\varepsilon>0$,

$$\Omega_{\varepsilon} = \left\{ \omega \in \Omega \mid \exists n_0, \ \forall n \geqslant n_0, \ \left| \frac{S_n(\omega)}{n} \right| < \varepsilon \right\}$$

alors $\mathbb{P}(\Omega_{\varepsilon})=1$.

- 4. En déduire que $\Omega' = \bigcap_{p \in \mathbb{N}^*} \Omega_{1/p}$ est de probabilité 1.
- 5. En déduire que l'événement : « la limite $\lim_{n \longrightarrow +\infty} \frac{X_1 + \dots + X_n}{n} \quad \text{existe} \quad \text{et} \quad \text{vaut} \quad \mathbb{E}(X) \ \ \text{\mathbb{R}}$ est de probabilité égale à 1.
- 6. Soit A un événement. On réalise plusieurs fois et de manière indépendante la même expérience et on note N_n le nombre de fois sur les n premières fois où l'événement A s'est réalisé. Quelle est la limite probable du quotient $\frac{N_n}{n}$, lorsque n tend vers $+\infty$?

Exercice 24

On dispose d'une urne contenant une boule blanche et une boule noire, ainsi que d'une pièce non truquée. On considère l'expérience & suivante :

- on jette une fois la pièce
- si on obtient pile, on tire avec remise une boule de l'urne
- si on obtient face, on tire sans remise une boule de l'urne.
- 1. On repète deux fois l'expérience $\mathscr E$. Soit X la variable aléatoire égale au nombre de boules blanches obtenues.
 - (a) Donner les valeurs de X.
 - (b) Calculer $\mathbb{P}(X=2)$ puis donner $\mathbb{P}(X=0)$.
 - (c) Calculer l'espérance et la variance de X.
- 2. On repète l'expérience $\mathscr E$ et on s'arrête dès que l'urne est vide ou dès que l'on a effectué trois fois l'expérience $\mathscr E$. Soient Y la variable aléatoire égale au nombre de réalisations de $\mathscr E$ effectuées et Z la variable aléatoire égale au nombre de boules blanches obtenues.
 - (a) Calculer $\mathbb{P}(Y=2)$. En déduire la loi de Y.
 - (b) Montrer que $\mathbb{P}(Y=3,Z=1)=\frac{11}{32}$
 - (c) Déterminer la loi du couple (Y, Z).
 - (d) Calculer la covariance de ce couple.

Exercice 25

On rappelle dans toute la suite la formule : $\sum_{n=1}^{\infty} k^3 = \frac{n^2(n+1)^2}{4}.$

Soit N un entier supérieur ou égal à 2. Une urne contient N-2 boules blanches et 2 boules noires. On tire successivement et sans remise les N boules de cette urne.

Les tirages étant numérotés de 1 à N, on note X_1 la variable aléatoire égale au numéro du tirage qui a fourni une boule noire pour la première fois et X_2 le numéro du tirage qui a fourni une boule noire pour la deuxième fois.

1. Préciser l'espace probabilisé $(\Omega, \mathscr{A}, \mathbb{P})$ que l'on peut utiliser pour modéliser cette expérience aléatoire.

2. Soient i et j deux entiers compris entre 1 et N. Montrer que l'on a :

$$\mathbb{P}(X_1 = i, X_2 = j) = \left\{ \begin{array}{ll} 0 & \text{si } 1 \leqslant j \leqslant i \leqslant N \\ \frac{2}{N(N-1)} & \text{si } 1 \leqslant i < j \leqslant N \end{array} \right.$$

Déterminer les lois de probabilité des variables X_1 et X_2 . Ces variables sont-elles indépendantes?

- 3. (a) Montrer que la variable $(N+1-X_2)$ a la même loi que X_1
 - (b) Déterminer la loi de X_2-X_1 et la comparer à la loi de X_1 .
 - (c) Calculer les espérances $E(X_1)$ et $E(X_2)$.
 - (d) Montrer l'égalité des variances $V(X_1)$ et $V(X_2)$.
 - (e) Établir la relation $2Cov(X_1, X_2) = V(X_1)$
- 4. Calculer $V(X_1)$; en déduire $V(X_2)$ et $Cov(X_1, X_2)$.
- 5. Soient $(\Omega, \mathscr{F}, \mathbb{P})$ un espace probabilisé quelconque et deux variables X et Y définies sur cet espace probabilisé, indépendantes et suivant la même loi uniforme $\operatorname{sur} \{1, \cdots, N\}.$

On désigne par D l'événement « la v.a. X ne prend pas la même valeur que $Y \gg 1$

- (a) Montrer que la probabilité de l'événement D est
- (b) Soient Z_1 et Z_2 les variables : $Z_1 = \min\{X,Y\}$ et $Z_2 = \max\{X, Y\}.$

Calculer pour tout couple (i, j) de l'ensemble $\{1,\cdots,N\}$ la probabilité conditionnelle : $\mathbb{P}(Z_1=$ $i, Z_2 = j \mid D$).

Exercice 26

Soient X, Y et Z trois variables aléatoires mutuellement indépendantes, définies sur le même espace probabilisé $(\Omega,\mathscr{A},\mathbb{P})$ et suivant toutes la même loi $\mathscr{U}_{[1,n]}$ uniforme sur $\{1,\cdots,n\}$.

1. Montrer que :

(a)
$$\forall k \in \{2, \dots, n+1\}$$
, $\mathbb{P}(X+Y=k) = \frac{k-1}{n^2}$.

(b)
$$\forall k \in \{n+2, \dots, 2n\},\ \mathbb{P}(X+Y=k) = \frac{2n-k+1}{n^2}.$$

2. Montrer que :

$$\mathbb{P}(X+Y=Z) = \frac{n-1}{2n^2}.$$

- 3. (a) Montrer que la variable aléatoire T=n+1-Zest de même loi que Z.
 - (b) La variable T est-elle indépendante de X et de Y?
 - (c) Déterminer la probabilité $\mathbb{P}(X+Y+Z=n+1)$.

_ 0 -

Exercice 27

Soit $n \geqslant 1$ un entier.

1. On pioche au hasard une partie $A \in \mathscr{P}(\llbracket 1, n \rrbracket)$. On note $X = \operatorname{Card}(A)$. Déterminer la loi de X, puis son espérance.

- 2. On pioche avec remise deux parties A et B dans $\mathscr{P}(\llbracket 1, n \rrbracket)$.
 - (a) Quelle est la probabilité que A soit incluse dans
 - (b) On note $Y = \operatorname{Card}(A \cap B)$. Déterminer la loi de
- 3. En quoi les résultats précédents sont-ils modifiés lorsque la pioche est sans remise?

Exercice 28

Soient $p \in]0,1[$, puis $(X_k)_{1\leqslant k\leqslant n}$ une famille de n variables définies sur le même espace probabilisé Ω , indépendantes et de même loi : $p \delta_1 + (1-p) \delta_{-1}$.

_ 0 —

On pose pour tout $k \in \{1, \cdots, n\}$, $\Pi_k = \prod_{i=1}^{\kappa} X_i$ et :

$$u_k = \mathbb{P}(\Pi_k = 1)$$
 et $v_k = \mathbb{P}(\Pi_k = -1)$.

1. Montrer que pour tout $k \in \{1, \dots, n-1\}$,

$$u_{k+1} = pu_k + (1-p)v_k$$
 et $v_{k+1} = (1-p)u_k + pv_k$.

- 2. Expliciter u_k et v_k en fonction de k. Interpréter le résultat lorsque k tend vers $+\infty$.
- 3. Déterminer une CNS pour que les variables Π_1 et Π_2 soient indépendantes.
- 4. On suppose la CNS précédente vérifiée. Montrer que les variables Π_1, \cdots, Π_n sont alors mutuellement indépendantes.

Exercice 29

On considère deux entiers n et p strictement positifs.

On dispose de n tiroirs T_1, \dots, T_n et de p boules B_1, \dots, B_p . On dispose les p boules dans les tiroirs, les rangements étant équiprobables et indépendants.

On note X_k la variable aléatoire comptant le nombre de boules dans le tiroir T_k et Y le nombre de tiroirs vides.

- 1. Soit k un entier entre 1 et n. Déterminer la loi de X_k .
- 2. Les variables X_1, \dots, X_n sont-elles indépendantes?
- 3. Déterminer $\mathbb{E}(Y)$.
- 4. Déterminer la loi de Y.

Exercice 30

Soient X_1, \cdots, X_n des v.a.r. finies définies sur un même

____ o ___

On pose
$$A = \left(\operatorname{Cov}(X_i, X_j)\right)_{1\leqslant i,j\leqslant n} \in \mathscr{M}_n(\mathbb{R}).$$
 Déterminer une CNS sur les variables X_1,\cdots,X_n pour que

la matrice A soit inversible.

Thèmes variés

Exercice 31

Soient $n \in \mathbb{N}^*$, puis $\left(X_{i,j}: \Omega \longrightarrow \{-1,1\}\right)_{1 \leqslant i,j \leqslant n}$ des variables aléatoires centrées mutuellement indépendantes [loi de Rademacher]. Pour tout $\omega \in \Omega$, on forme la matrice aléatoire :

$$M(\omega) = \left(X_{i,j}(\omega)\right)_{1 \le i,j \le n} \in \mathscr{M}_n(\mathbb{R}).$$

- 1. Déterminer la loi de ${
 m Tr}(M)$, puis calculer son espérance et sa variance.
- 2. Calculer $\mathbb{P}(\operatorname{Rg}(M) = 1)$.
- 3. Déterminer l'espérance et la variance de la variable $\det(M)$.

0 —

Exercice 32

- 1. Soient $0 \leqslant p \leqslant n$ et $0 \leqslant k \leqslant n$ trois entiers. Un sac contient n boules dont p boules blanches. On pioche k boules sans remise. On note X le nombre de boules blanches piochées. Déterminer la loi de X puis son espérance.
- 2. Soit (Ω,\mathbb{P}) un espace probabilisé. Soit A un événement de probabilité $p\in]0,1[$. Soit X le nombre d'expériences réalisées dans des conditions indépendantes nécessaires pour que l'événement A se réalise la première fois. Déterminer la loi de X puis son espérance.

Exercice 33

Soit $X:\Omega\longrightarrow\mathbb{N}$ une variable aléatoire telle que :

$$\forall (n,m) \in \mathbb{N}^2, \ \mathbb{P}(X \geqslant n+m \mid X \geqslant n) = \mathbb{P}(X \geqslant m).$$

On suppose que pour tout $n\in\mathbb{N}$, $\mathbb{P}(X\geqslant n)>0.$ On pose $p=\mathbb{P}(X=0)$ et on suppose p>0.

- 1. Montrer que 0 .
- 2 On pose $f: n \longmapsto \mathbb{P}(X \geqslant n)$.
 - (a) Montrer que : $f(n+m) = f(n) \cdot f(m)$.
 - (b) En déduire que : $f: n \longmapsto f(1)^n$.
 - (c) Calculer $\mathbb{P}(X=n)$, puis E(X).

Exercice 34

Soit $s \in \mathbb{N}^*$. On appelle **matrice stochastique**, toute matrice $A \in \mathscr{M}_s(\mathbb{R})$ telle que les deux conditions suivantes sont réalisées :

- tous les termes de A sont positifs
- ullet la somme des coefficients de A situés sur une même ligne est toujours égale à 1.
 - 1. Montrer que l'ensemble ${\mathscr S}$ des matrices stochastiques est un convexe stable par multiplication.
 - 2. Soit $\mathscr{E}=\{e_1,\cdots,e_s\}$ un ensemble comportant s éléments. On considère une marche aléatoire indépendante sur l'espace des états \mathscr{E} :
 - ullet à l'instant t=0, le marcheur est en e_1
 - ullet si à l'instant t=n, le marcheur est en e_i , il passera en e_j avec la probabilité p_{ij} .

- (a) Montrer que la matrice $P=(p_{i,j})_{1\leqslant i,j\leqslant s}$ est stochastique.
- (b) Montrer que pour tout $n \in \mathbb{N}$, en notant $P^n = (p_{i,j}(n))_{1 \leqslant i,j \leqslant s}$, alors la probabilité que le marcheur parte de e_i pour arriver en e_j au bout de n étapes est égale à $p_{i,j}(n)$.
- 3. On considère un marcheur se déplaçant sur \mathscr{U}_s l'ensemble des racines $s^{\grave{e}me}$ de l'unité :
 - \bullet à l'instant t=0, le marcheur est en 1
 - si à l'instant t=n, le marcheur est en $\exp\left(\frac{2ik\pi}{s}\right)$, alors le marcheur ira à l'instant à t=n+1 soit en $\exp\left(\frac{2i(k-1)\pi}{s}\right)$, soit en $\exp\left(\frac{2i(k+1)\pi}{s}\right)$ avec une probabilité de $\frac{1}{2}$ pour les deux mouvements.

On suppose dans la suite que l'entier s est impair.

- (a) Déterminer la matrice stochastique P associée à cette marche aléatoire.
- (b) On admet que la matrice P est diagonalisable.
 - i. Soit λ un nombre réel. Soit X un vecteur colonne non nul tel que $PX = \lambda \cdot X$. En considérant l'indice i tel que $|X_i|$ est maximal, montrer que si $|\lambda| \geqslant 1$, alors $\lambda = 1$ et toutes les composantes de X sont égales.
 - ii. Montrer que la suite de matrices $(P^n)_{n\in\mathbb{N}}$ est convergente vers une matrice P_{∞} .
 - iii. Montrer que si $(B^n)_{n\in\mathbb{N}}$ est une suite de matrices carrées convergente de limite matricielle B_∞ , alors la matrice B_∞ est la matrice d'une projection.
 - iv. Montrer que si Q est une matrice carrée telle que $Q^2=Q=Q^T$, alors la matrice Q est la matrice d'une projection orthogonale.
 - v. Montrer que la suite $(P^n)_{n\in\mathbb{N}}$ converge vers une matrice de projection orthogonale de rang 1 que l'on explicitera.
- (c) Soit ω une racine $s^{\grave{e}me}$ de l'unité. Déterminer lorsque n tend vers $+\infty$, la probabilité qu'a le marcheur d'arriver en ω en n étapes.

Exercice 35

1. Soit $(A,+,\times)$ un anneau commutatif. Soient $x_1,\cdots,x_n,\ n$ éléments de A. Montrer que :

_ 0 _

$$1 - \prod_{k=1}^{n} (1 - x_k) =$$

$$\sum_{s=1}^{n} (-1)^{s-1} \begin{pmatrix} \sum & \prod_{j \in I} x_j \\ \operatorname{Card}(I) = s \end{pmatrix}.$$

2. En déduire que si \mathbb{P} est une probabilité sur un univers Ω et si A_1, \dots, A_n sont des événements, alors :

$$\mathbb{P}\left(\bigcup_{k=1}^{n}A_{k}\right)=$$

$$\sum_{s=1}^{n} (-1)^{s-1} \left(\sum_{\substack{I \subset \{1, \dots, n\} \\ \operatorname{Card}(I) = s}} \mathbb{P} \left(\bigcap_{j \in I} A_j \right) \right)$$

- 3. (a) Soit $n\geqslant 1$ un entier. On choisit au hasard une permutation σ sur l'ensemble $\{1,\cdots,n\}$. Déterminer la probabilité p_n que la permutation choisie n'ait aucun point fixe.
 - (b) Un facteur distribue le courrier au hasard sur une journée. Quelle est la probabilité que personne n'ait le bon courrier?

Exercice 36

- 1. Soient $s_0\in\mathbb{Z}$, puis $p\in\mathbb{N}^*$ et $s_p\in\mathbb{Z}$. On appelle chemin γ reliant le point $(0,s_0)$ à (p,s_p) , toute application $\gamma:\{0,\cdots,p\}\longrightarrow\mathbb{Z}^2$ telle que $\gamma(0)=(0,s_0)$, $\gamma(p)=(p,s_p)$ et pour tout i entre 0 et p-1, on a $\gamma(i)=(i,s_i)$ et $\gamma(i+1)=(i+1,s_{i+1})$, avec $|s_{i+1}-s_i|=1$.
 - (a) Déterminer le nombre total de chemins possibles reliant $(0, s_0)$ à (p, s_p) .
 - (b) On suppose que s_0 et s_p sont strictement positifs. Montrer qu'il existe exactement autant de chemins reliant $(0,s_0)$ à (p,s_p) et touchant l'axe des abscisses que de chemins reliant $(0,s_0)$ à $(p,-s_p)$.
- 2. Soit $n\geqslant 1$ un entier. On considère un sac contenant contenant n boules blanches et n boules noires. On pioche les 2n boules les unes après les autres. Quelle est la probabilité de l'événement suivant : « au cours des tirages successifs, le nombre de boules blanches sorties est toujours supérieur ou égal au nombre de boules noires sorties. »
- 3. Au cours d'un scrutin opposant deux candidats A et B, le candidat A a obtenu 600 voix et le candidat B en a obtenu 400. Quelle est la probabilité qu'au cours du dépouillement, les voix pour le candidat A aient toujours été majoritaires [au sens large].
- 4. Dans un cinéma, la place coûte 5 euros. Dans une queue comptant 100 personnes, il y a 55 personnes possédant un billet de 5 euros et 45 personnes disposant d'un seul billet de 10 euros. Combien au minimum faut-il prévoir de billets de 5 euros en réserve au guichet pour que la probabilité de pouvoir réceptionner chaque personne sans intervertir l'ordre de passage soit au moins de 95%?

Exercice 37

Est-il possible de truquer deux dés à six faces de telle sorte que les différentes sommes de leur face supérieure apparaissent avec équiprobabilité?

[indication : si X est une variable, on pourra considérer $G_X(t) = \mathbb{E}(t^X)$.]

Un peu plus difficile

Exercice 38

Soient $X:\Omega\longrightarrow [0,+\infty[$ une variable aléatoire discrète. On suppose qu'il existe X_1 et X_2 deux variables aléatoires indépendantes de même loi que X et telles que :

$$X_1 + X_2 \sim 2X.$$

Montrer que X est presque sûrement constante.

Exercice 39

Soit $X:\Omega\longrightarrow\mathbb{R}$ une variable aléatoire discrète. Soient a et b deux réels avec $a\neq -1$, $b\neq 0$ et $X\sim aX+b$. Montrer que la variable X est presque sûrement constante.

Exercice 40

- 1. Soit $X:\Omega\longrightarrow\{1,\cdots,n\}$ une variable aléatoire. Montrer que la loi de X est déterminée par les $\mathbb{E}(X^k)$, pour $k\in[\![1,n-1]\!]$.
- 2. Soit $Y:\Omega\longrightarrow\mathbb{N}$ une variable aléatoire telle qu'il existe $a\in]0,1[$ vérifiant :

$$\mathbb{P}(Y=k)=o(a^k)$$
, lorsque k tend vers $+\infty$.

- (a) Montrer que Y admet des moments finis de tous ordres.
- (b) Montrer que les $\mathbb{E}(Y^n)$, pour $n \in \mathbb{N}$ déterminent la loi de Y.

Exercice 41

Soit $n \in \mathbb{N}^*$

On considère une suite $\left(X_k:\Omega\longrightarrow \llbracket 1,n\rrbracket\right)_{k\in\mathbb{N}^*}$ une suite de variables aléatoires mutuellement indépendantes, et suivant toutes la loi uniforme $\mathscr{U}_{\llbracket 1,n\rrbracket}$.

- 1. Montrer que presque sûrement, l'ensemble $\Big\{X_k\;;\;k\in\mathbb{N}^*\Big\}$ est égal à $[\![1,n]\!].$
- 2. Construire des variables aléatoires N_1, \cdots, N_n de Ω vers \mathbb{N}^* telles que :
 - presque sûrement, $N_1=1$
 - $\begin{array}{l} \bullet \ \ \text{presque sûrement, pour tout } k \in [\![2,n]\!] \text{, l'ensemble} \\ \left\{X_1,\cdots,X_{N_k}\right\} \ \text{est de cardinal } k \ \text{et l'ensemble} \\ \left\{X_1,\cdots,X_{N_k-1}\right\} \ \text{est de cardinal } k-1. \end{array}$

On pose $Y_1=1$ et pour tout $k\in [\![2,n]\!]$, $Y_k=N_k-N_{k-1}$.

- 3. Déterminer pour tout $k \in [1, n]$, la loi de Y_k .
- 4. Déterminer un équivalent de $\mathbb{E}(N_n)$, lorsque n tend vers $+\infty$.
- 5. Déterminer un équivalent de $V(N_n)$, lorsque n tend vers $+\infty$.

_ o __

Exercice 42

Soient $X:\Omega \longrightarrow \mathbb{Z}$ et $Y:\Omega \longrightarrow \mathbb{Z}$ deux variables aléatoires. On suppose que Y admet une espérance finie. Montrer qu'il existe une unique fonction $g:\mathbb{Z} \longrightarrow \mathbb{R}$ (modulo la loi de X presque sûrement) vérifiant les conditions suivantes :

- 8
- ullet la variable g(X) est d'espérance finie
- \bullet pour toute fonction $f:\mathbb{Z}\longrightarrow\mathbb{R}$ bornée, $\mathbb{E}(Y\;f(X))=\mathbb{E}(g(X)\;f(X)).$

Exercice 43

Soient $n \geqslant 2$ un entier et $X : \Omega \longrightarrow \mathbb{R}$ une variable aléatoire discrète suivante la loi uniforme sur [1, n].

Montrer l'équivalence entre les deux points suivants :

- \rhd il existe Y et Z deux variables aléatoires non certaines définies de Ω vers $\mathbb N,$ indépendantes telles que $X\sim Y+Z$
- \triangleright l'entier n n'est pas premier

Exercice 44

- 1. Montrer qu'il existe une infinité de nombres premiers.
- 2. Soit $k\in\mathbb{N}^*$ tel que l'entier p=3k+2 soit un nombre premier. On fixe une partie $A\subset (\mathbb{Z}/p\mathbb{Z})^*$ et un élément $x\in (\mathbb{Z}/p\mathbb{Z})^*$. On note B l'ensemble des classes d'équivalence des éléments de $[\![k+1,2k+1]\!]$. On pose $B_0=A\cap (xB)$. Montrer que B_0 est sans somme, c'est-à-dire :

$$\forall (a,b) \in B_0^2, \ a+b \notin B_0.$$

3. Soit A une partie finie de $\mathbb{Z}\backslash\{0\}$. On admet qu'il existe une infinité de nombres premiers congrus à 2 modulo 3. Montrer qu'il existe une partie $B\subset A$ sans somme et telle que :

$$\#(B) > \frac{\#(A)}{3}.$$

On pourra considérer une variable aléatoire suivant la loi uniforme sur $(\mathbb{Z}/p\mathbb{Z})^*$.

4. Montrer qu'il existe une infinité de nombres premiers congrus à 2 modulo 3.

____ o ____