MATRICES

CALCULS MATRICIELS

Exercice 1

 $\overline{\text{On pose } A} = \left(\begin{array}{cc} 1 & 2 \\ 2 & 3 \end{array}\right) \text{ et } B = \left(\begin{array}{cc} -1 & 3 \\ -5 & 1 \end{array}\right).$

- 1. Calculer $A \times B$ et $B \times A$.
- 2. Montrer que A et B sont inversibles et calculer leur inverse.
- 3. Montrer que AB et BA sont inversibles et calculer leur inverse.
- 4. Vérifier la formule du cours : $(AB)^{-1} = B^{-1}A^{-1}$.
- 5. Montrer que les familles (I_2,A,A^2) et (I_2,B,B^2) sont liées et retrouver le caractère inversible des matrices A et B.
- 6. Comment calculer les matrices A^n et B^n pour tout $n \in \mathbb{N}$?

Exercice 2

Soit $A = \begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{pmatrix} \in \mathcal{M}_3(\mathbb{R}).$

- 1. Déterminer $\operatorname{Ker} A$ et $\operatorname{Im} A$ et montrer qu'ils sont supplémentaires dans $\mathscr{M}_{3,1}(\mathbb{R})$.
- 2. Trouver une base \mathscr{B}_1 de $\operatorname{Ker} A$ et une base \mathscr{B}_2 de $\operatorname{Im} A$. On pose $\mathscr{B}=\mathscr{B}_1\cup\mathscr{B}_2$, puis P la matrice de passage de la base canonique de \mathbb{R}^3 à la base \mathscr{B} .
- 3. Calculer P et P^{-1} .
- 4. Calculer $P^{-1}AP$ de deux manières différentes.
- 5. Proposer un calcul pour A^n , lorsque n décrit \mathbb{N} .

Exercice 3

On pose $A = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix}$ puis $B = A - 2I_3$.

- 1. Calculer B^n pour tout $n \in \mathbb{N}$.
- 2. En déduire A^n pour tout $n \in \mathbb{N}$.

Exercice 4

Soit $d \in \mathbb{N}^*$. On pose A la matrice triangulaire supérieure dans $\mathcal{M}_d(\mathbb{R})$ n'admettant que des 1 sur et au-dessus de la diagonale.

1. Déterminer une matrice $N\in\mathscr{M}_d(\mathbb{C})$ telle que :

$$A = \sum_{k=0}^{d} N^k.$$

- 2. En déduire pour tout $n \in \mathbb{N}$, la matrice A^n .
- 3. Montrer que A est inversible et calculer A^{-1} .

Exercice 5

On pose :

$$\mathscr{A} = \left\{ \begin{pmatrix} a & b & c \\ 3c & a - 3c & b \\ 3b & 3c - 3b & a - 3c \end{pmatrix} ; (a, b, c) \in \mathbb{C}^3 \right\}.$$

Montrer que $\mathscr A$ est une sous-algèbre commutative de $\mathscr M_3(\mathbb C)$ et en déterminer une base.

Exercice 6

Soit $A=(a_{ij})\in \mathscr{M}_{n+1}(\mathbb{R})$ telle que :

$$\forall (i,j) \in [1, n+1]^2, \ a_{ij} = \begin{pmatrix} j-1 \\ i-1 \end{pmatrix}.$$

- 1. Expliciter un endomorphisme f sur un espace de polynômes dont A est une matrice représentant f selon une base.
- 2. Montrer que la matrice A est inversible et calculer A^{-1}

Exercice 7

Déterminer le rang des matrices

$$A_n = \left(\sin(i+j)\right)_{1\leqslant i,j\leqslant n},$$

lorsque l'entier n décrit \mathbb{N}^* .

Exercice 8

On pose $A=\left(\begin{array}{ccc} 4&3&0\\ 5&0&-1\\ 0&1&2 \end{array} \right)\in \mathscr{M}_3(\mathbb{R}).$

- 1. Déterminer une base de $\mathbb{C}[A] = \operatorname{Vect}(A^k \; ; \; k \in \mathbb{N})$.
- 2. La matrice A est-elle inversible? Si oui, calculer son inverse.
- 3. Déterminer les complexes λ tels que la matrice $A-\lambda I_3$ n'est pas inversible.

Exercice 9

 $\overline{\mathsf{Soit}\ A\in\mathscr{M}_p(\mathbb{R})}$ une matrice inversible et ne comportant que des 0 ou des 1.

Déterminer le nombre minimal ou maximal de 1 possible dans la matrice A.

Exercice 10

Soit $n \in \mathbb{N}^*$.

- 1. Montrer que l'application Θ définie par : Θ : $\mathcal{M}_n(\mathbb{C}) \longrightarrow \mathcal{L}(\mathcal{M}_n(\mathbb{C}), \mathbb{C})$ $A \longmapsto \left(M \longmapsto \operatorname{Tr}(AM)\right)$ est un isomorphisme.
- 2. En déduire que si $n \geqslant 2$, alors tout hyperplan de $\mathcal{M}_n(\mathbb{C})$ contient au moins une matrice inversible.

Exercice 11

- 1. Existe-t-il des matrices A et B dans $\mathscr{M}_p(\mathbb{R})$ telles que $\mathsf{Soit}\ A \in \mathscr{M}_{p,q}(\mathbb{C})$. $AB - BA = I_p$?
- 2. Que se passe-t-il si l'on remplace \mathbb{R} par un autre corps?

Exercice 12

Montrer que pour qu'il existe A et B dans $\mathscr{M}_2(\mathbb{R})$ et x, ydans $\mathbb R$ tels que :

 $\bullet \ AB = \left(\begin{array}{cc} 25 & 11\\ 11 & 5 \end{array}\right)$ • $BA = \begin{pmatrix} x & 14 \\ 14 & y \end{pmatrix}$ et $x \leqslant y$, il faut que (x,y) =(10, 20).

Exercice 13

Soit
$$H = \left\{ M(a, b, c, d) = \begin{pmatrix} a & -b & -c & -d \\ b & a & -d & c \\ c & d & a & -b \\ d & -c & b & a \end{pmatrix} \right\}.$$

- 1. Montrer que H est un \mathbb{R} -espace vectoriel dont on donnera la dimension.
- 2. On pose I = M(0, 1, 0, 0), J = M(0, 0, 1, 0) et K =M(0,0,0,1). Calculer les produits XY avec X et Ydans $\{I, J, K\}$.
- 3. Montrer que $(H, +, \times)$ est un corps non commutatif.
- 4. Montrer que le polynôme X^2+1 admet au moins 6 racines dans le corps H.

Exercice 14

On pose $A = (\min\{i,j\})_{1 \leq i,j \leq n}$ dans $\mathcal{M}_n(\mathbb{R})$.

- 1. Déterminer une matrice triangulaire supérieure U avec des 1 sur la diagonale telle que $A = U^T \times U$.
- 2. En déduire que A est inversible et calculer A^{-1} .
- 3. Montrer que pour tout $\lambda \in \mathbb{R}$, si $(A^{-1} \lambda I_n)$ n'est pas inversible, alors il existe $\theta \in \mathbb{R}$ tel que $\lambda = 2 - 2\cos\theta$.

Exercice 15

On note $SL_2(\mathbb{N})$, l'ensemble des matrices de la forme $\left(\begin{array}{cc} a & b \\ c & d \end{array}\right) \text{ avec } (a,b,c,d) \in \mathbb{N}^4 \text{ et } ad-bc=1.$

_ 0 _

On pose
$$D=\left(\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array}\right)$$
, puis $G=\left(\begin{array}{cc} 1 & 0 \\ 1 & 1 \end{array}\right)$.

- 1. Soit A une matrice dans $SL_2(\mathbb{N})$. Montrer que si $A \neq$ I_2 , alors il existe une seule matrice $M \in \{G, D\}$ telle que la matrice $M^{-1}A$ appartienne encore à $SL_2(\mathbb{N})$.
- 2. En déduire que toute matrice de $SL_2(\mathbb{N})$ peut s'écrire comme un produit de matrices $A = M_1 \cdots M_r$, avec chaque M_k valant D ou G, et que ce produit est unique.

MATRICES ET APPLICATIONS LINÉAIRES

Exercice 16

- 1. Appliquer le théorème du rang à l'application linéaire
- 2. Effectuer l'application numérique dans le cas suivant : on donne la liste (E_1, \cdots, E_{2^n}) de toutes les parties possibles de [1, n] et on pose :

$$\forall (i,j) \in \llbracket 1,2^n
rbracket, \ A_{i,j} = \left\{ egin{array}{ll} 1 \ , \ \mathrm{si} \ E_i \cap E_j
eq \emptyset \ 0, \ \mathrm{sinon} \end{array}
ight..$$

Exercice 17

- 1. Montrer que $f: P(X) \longmapsto (X^2-1)P''(X) +$ 2XP'(X) est dans $\mathscr{L}(\mathbb{R}_3[X])$.
- 2. Déterminer la matrice de f selon la base canonique de $\mathbb{R}_3[X]$.
- 3. En déduire $\operatorname{Ker} f$ et $\operatorname{Im} f$.
- 4. Peut-on déterminer une base de $\mathbb{R}_3[X]$ selon laquelle l'endomorphisme f est représenté selon une matrice diagonale?

Exercice 18

Soit
$$A = \begin{pmatrix} 5 & -4 & 2 \\ 14 & -10 & 4 \\ 16 & -10 & 3 \end{pmatrix}$$
.

- 1. Montrer que $\mathscr{B} = ((1,2,1),(1,2,2),(0,1,2))$ est une base de \mathbb{R}^3 .
- 2. Calculer $\mathcal{M}at_{\mathscr{B}}(A)$.
- 3. Calculer la matrice P de passage de la base canonique
- 4. Calculer P^{-1} , puis $P^{-1}AP$. Qu'en déduit-on?

Exercice 19

On considère les espaces $E=\mathbb{C}_3[X]$ et $F=\mathbb{C}_2[X]$, puis $f: P(X) \longmapsto P'(X+1) + XP''(X+2).$

- 1. Déterminer la matrice A représentant l'application linéaire f selon les bases canoniques de E et F.
- 2. Montrer que les familles $\mathscr{B} = (X^2 + 1, X^2 + 2, 2X^2 +$ $3X-1, -X^3+X+1$) et $\mathscr{B}' = (2-X, 3-X, 1-X^2)$ forment des bases respectives de E et F.

- 3. Déterminer la matrice B représentant l'application linéaire f selon les bases \mathscr{B} de E et \mathscr{B}' de F.
- 4. Calculer les matrices P de passage de la base canonique de E à \mathcal{B} , puis Q de la base canonique de F à
- 5. Calculer P^{-1} et Q^{-1} .
- 6. Vérifier que $Q^{-1}AP = B$.

Exercice 20

Soient $a \in \mathbb{C}$, puis $n \in \mathbb{N}$. On pose $f: P(X) \longmapsto P(X+a)$.

- 1. Calculer la matrice A représentant f selon la base canonique de $\mathbb{C}_n[X]$.
- 2. Montrer que la matrice A est inversible et calculer
- 3. Calculer pour tout $k \in \mathbb{Z}$, la matrice A^k .

Exercice 21

Soit $f \in \mathcal{L}(E)$ avec dim $E = n \geqslant 1$. On suppose que $f^n = 0$ et $f^{n-1} \neq 0$.

_ 0 _

- 1. Montrer qu'il existe un vecteur $x_0 \in E$ tel que la famille $(x_0, f(x_0), \dots, f^{n-1}(x_0))$ soit une base de E.
- 2. Déterminer la matrice représentant f selon cette base.
- 3. Calculer $\operatorname{Rg} f$.

Exercice 22

- 1. Déterminer la matrice dans la base canonique de la projection parallèlement à Vect((-1,1,2)) sur le plan $\mbox{d'équation}: x-2y+z=0.$
- 2. Soit $X=\left(\begin{array}{c} x_1\\ \vdots\\ x_n \end{array}\right)\in \mathscr{M}_{n,1}(\mathbb{R}).$ Montrer que la ma-

trice $X \cdot X^T$ est une matrice de projection de rang un si et seulement si $X^T \cdot X = (1)$.

Exercice 23

Soit $\overline{A} \in \overline{\mathscr{M}}_{p,q}(\mathbb{C})$ une matrice. Montrer que les assertions suivantes sont équivalentes :

- $\operatorname{Rg}(A) \leq 1$
- ullet il existe une matrice-ligne $L \ \in \ \mathscr{M}_{1,q}(\mathbb{C})$ et une matrice-colonne $C \in \mathscr{M}_{p,1}(\mathbb{C})$ telles que $A = C \times L$.

Exercice 24

Soit E un \mathbb{C} -espace vectoriel de dimension finie. Soient \mathscr{B} et \mathscr{C} deux bases de E, puis $u \in \mathscr{L}(E)$.

- 1. On pose P la matrice de passage de la base $\mathscr B$ vers la base &. Quelle est la matrice de passage de la base duale \mathscr{B}^* vers la base duale \mathscr{C}^* ?
- 2. En déduire que toute base de $\mathscr{L}(E,\mathbb{C})$ est une base duale d'une base de E.
- 3. On pose $A = \mathcal{M}at_{\mathscr{B}}(u)$, puis $\Phi : \varphi \longmapsto \varphi \circ u$. Calculer $\mathcal{M}at_{\mathscr{B}^*}(\Phi)$.

Exercice 25

Soient A et B dans $\mathcal{M}_n(K)$ telles que :

$$\forall X \in \mathcal{M}_n(K), AXB = 0.$$

Montrer que A = 0 ou B = 0.

Exercice 26

Soient $\overline{A} \in \mathcal{M}_{3,2}(\mathbb{R})$ et $B \in \mathcal{M}_{2,3}(\mathbb{R})$ telles que :

$$AB = \left(\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right).$$

Montrer que $BA = I_2$

Exercice 27

- 1. Déterminer la matrice A selon la base canonique de \mathbb{R}^3 de la projection sur le plan x+y+z=0, parallèlement à la droite 6x = 3y = 2z.
- 2. Déterminer toutes les matrices B vérifiant $B^2=B$ et AB = BA.
- 3. Déterminer tous les sous-espaces stables par l'application linéaire A.

Exercice 28

Soit $p \in \mathbb{N}^*$.

1. Montrer que si $A \in \mathscr{M}_p(\mathbb{C})$ est un projecteur, alors Rg(A) = Tr(A).

Soient A_1, \dots, A_n des matrices de projections. On pose Q = $A_1 + \cdots + A_n$.

- 2. On suppose que pour tous entiers i et j entre 1 et n, on a $A_i A_j = \delta_{i,j} \cdot A_i$. Montrer que Q est une matrice de projection.
- 3. On suppose que Q est une matrice de projection. On note $F = \operatorname{Im}(Q)$, $G = \operatorname{Ker}(Q)$, puis $F_k = \operatorname{Im}(A_k)$ et $G_k = \operatorname{Ker}(A_k)$, pour tout $k \in [1, n]$.
 - (a) Montrer que $F\subset \sum_{k=1}F_k$.
 - (b) Montrer que $F = \bigoplus_{k=1}^n F_k$. (c) Montrer que $G = \bigcap_{k=1}^n G_k$.

 - (d) Montrer que pour tous entiers i et j entre 1 et n, $A_i A_j = \delta_{i,j} \cdot A_i$.

Exercice 29

Soit $A \in \mathcal{M}_n(\mathbb{C})$. Montrer l'équivalence des deux assertions suivantes:

- la matrice A n'est pas inversible
- ullet il existe une matrice B non nulle telle que AB = BA = 0.

Réductions de matrices

On pose
$$A = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}$$
.

- 1. Déterminer une base \mathscr{B}_1 de $\operatorname{Ker}(A-4I)$ et \mathscr{B}_2 de $\operatorname{Ker}(A-I)$.
- 2. Montrer que ces deux espaces sont supplémentaires dans \mathbb{R}^3 .
- 3. Montrer que $\mathscr{B}=\mathscr{B}_1\cup\mathscr{B}_2$ est une base de \mathbb{R}^3 .
- 4. Calculer $\mathcal{M}at_{\mathscr{B}}(A)$.

Exercice 31

Montrer que la matrice $A=\left(\begin{array}{ccc} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{array}\right)$ est semblable à

la matrice $D = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 3 \end{pmatrix}$.

Exercice 32

Montrer que la matrice $A=\left(\begin{array}{ccc}1&1&-1\\-3&-3&3\\-2&-2&2\end{array}\right)$ est sem-

blable dans $\mathcal{M}_3(\mathbb{R})$ à la matrice $E_{2,1}$.

Exercice 33

Soit $A \in \mathcal{M}_p(\mathbb{R})$. En utilisant $r = \operatorname{Rg}(A)$, montrer qu'il existe une matrice inversible P telle que la matrice PA soit symétrique.

Exercice 34

On considère la base canonique de $\mathcal{M}_p(K)$.

- Expliciter le produit matriciel de deux vecteurs de cette base.
- 2. Deux matrices de cette base sont-elles équivalentes? Si oui, expliciter les matrices de changement de base.
- 3. Deux matrices de cette base sont-elles semblables? Si oui, expliciter la matrice de changement de base.

Exercice 35

Montrer que les matrices nilpotentes de $\mathscr{M}_p(\mathbb{C})$ sont exactement les matrices semblables aux matrices triangulaires supérieures à diagonale nulle.

Exercice 36

Soient $n \in \mathbb{N}^*$ et $A \in \mathscr{M}_n(\mathbb{C})$ une matrice de trace nulle. Montrer que A est semblable à une matrice de diagonale nulle. [On pourra effectuer une récurrence sur l'entier n et distinguer deux cas selon que la matrice A est une homothétie ou non.]

Exercice 37

On pose
$$A = \begin{pmatrix} 1 & -4 & -3 & -2 & -2 \\ 2 & -6 & -6 & -4 & -2 \\ -3 & 12 & 12 & 6 & 3 \\ 0 & 2 & 3 & 0 & -1 \end{pmatrix}$$
. Expliciter une

matrice de type J_r et les matrices de passage telles que la matrice A soit équivalente à la matrice J_r .

Exercice 38

Soit A une matrice dans $\mathcal{M}_n(\mathbb{R})$ telle que $A^2=-I_n$. Montrer qu'il existe une base \mathcal{B} de \mathbb{R}^n telle que la matrice $\mathcal{M}at_{\mathcal{B}}(A)$ soit diagonale par blocs avec des blocs $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$.

Exercice 39

Soit $n \in \mathbb{N}^*$, K un corps et $A \in \mathcal{M}_{3n}(K)$ telle que $\operatorname{Rg}(A) = 2n$ et $A^3 = 0$. Montrer que la matrice A est semblable à la

matrice par blocs
$$\left(\begin{array}{ccc} 0 & I_n & 0 \\ 0 & 0 & I_n \\ 0 & 0 & 0 \end{array}\right).$$

Exercice 40

Soient $n\geqslant 1$ un entier, φ une forme linéaire sur $\mathscr{M}_n(\mathbb{R})$. On note $M\sim N$ dès que M et N sont semblables. On suppose que si $A\sim B$, alors $\varphi(A)=\varphi(B)$.

- 1. Montrer que pour tous i et j entre 1 et n, $E_{i,i} \sim E_{j,j}$ et pour tous entiers $i \neq j$ et $k \neq \ell$ entre 1 et n, $E_{i,j} \sim E_{k,\ell}$.
- 2. Montrer que $S=\dfrac{1}{n}\left(\begin{array}{ccc}1&\cdots&1\\ \vdots&&\vdots\\ 1&\cdots&1\end{array}\right)$ est semblable à $E_{1,1}$
- 3. Conclure qu'il existe $\lambda \in \mathbb{R}$ tel que : $\varphi = \lambda \cdot \operatorname{Tr}$.

Exercice 41

- 1. Montrer que l'application f est un endomorphisme de $\mathbb{C}_n[X]$.
- 2. Soit $\lambda \in \mathbb{C}$. On pose $E_{\lambda} = \Big\{P \in \mathbb{C}_n[X] \mid f(P) = \lambda \cdot P\Big\}$.
 - (a) Montrer que E_{λ} est un sous-espace de $\mathbb{C}_n[X]$. On suppose trouvé $\lambda=\zeta+i\xi$, où $(\zeta,\xi)\in\mathbb{R}^2$, tel que E_{λ} n'est pas réduit à $\{0\}$. Soit $P(X)\in E_{\lambda}\setminus\{0\}$.
 - (b) Effectuer les décompositions en éléments simples dans $\mathbb{C}(X)$ des fractions rationnelles $\frac{P'(X)}{P(X)}$ et $\frac{nX+1-\lambda}{X^2+1}.$
 - (c) En déduire que $\zeta=1$ et $\xi=n-2k$, pour un certain entier $k\in\{0,\cdots,n\}$.
 - (d) Montrer que pour tout $k \in \{0, \cdots, n\}$, en posant $\lambda_k = 1 + i(n-2k)$, alors : $E_{\lambda_k} = \operatorname{Vect} \left((X-i)^k \cdot (X+i)^{n-k} \right)$.
- 3. Montrer que la famille $\Big((X-i)^k\cdot (X+i)^{n-k}\Big)_{0\leqslant k\leqslant n}$ forme une base de $\mathbb{C}_n[X]$.
- 4. Déterminer la matrice A représentant canoniquement l'endomorphisme f.
- 5. Diagonaliser la matrice A.

Exercice 42

Soient A et B dans $\mathcal{M}_3(\mathbb{C})$ non nulles telles que $A^2 = B^2 = 0$

- 1. Calculer Rg(A).
- 2. Montrer que A et B sont semblables.

Thèmes variés

Exercice 43

1. Soit $m \in \mathbb{R}$. Déterminer le nombre de réels m tels que la matrice :

$$A_m = \left(\begin{array}{ccc} 2+m & 2 & 3\\ 1 & 1+m & 4\\ 1 & -2 & 1+m \end{array}\right)$$

ne soit pas inversible.

2. Soit $A \in \mathcal{M}_n(\mathbb{C})$. Montrer qu'il existe un nombre fini de complexes λ tels que la matrice $A - \lambda \cdot I_n$ ne soit pas inversible.

Exercice 44

- 2. Calculer $\left(\begin{array}{cc} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{array}\right)^n$, pour tout $n\in\mathbb{N}$.
- 3 Soit $\theta \in \mathbb{R} \setminus \pi \mathbb{Z}$
 - (a) Montrer que la matrice $\varphi(\theta)$ n'est pas semblable à une matrice diagonale dans $\mathscr{M}_n(\mathbb{R})$.
 - (b) Montrer que la matrice $\varphi(\theta)$ est semblable à une matrice diagonale dans $\mathscr{M}_n(\mathbb{C})$ et expliciter la matrice de passage permettant de diagonaliser la matrice.

Exercice 45

Soit $A \in \mathscr{M}_n(\mathbb{C})$.

- $\begin{array}{lll} \text{1. Montrer} & \text{que} & \text{l'ensemble} & I_A & = & \Big\{P(X) & \in \\ \mathbb{C}[X] \mid P(A) = 0 \Big\} & \text{est un idéal de } \mathbb{C}[X] & \text{non réduit à} \\ \{0\}. & \end{array}$
- 2. Déterminer le polynôme minimal $\mu_A(X)$ de la matrice A c'est-à-dire le générateur unitaire de l'idéal I_A dans les cas suivants :
 - la matrice A est une matrice compagnon : $A = \begin{pmatrix} 0 & 0 & \cdots & 0 & a_0 \end{pmatrix}$

$$\begin{pmatrix}
0 & 0 & \cdots & 0 & a_0 \\
1 & 0 & & \vdots & a_1 \\
0 & & & \vdots & \vdots \\
\vdots & & 1 & 0 & a_{n-2} \\
0 & \cdots & 0 & 1 & a_{n-1}
\end{pmatrix}$$

- la matrice A est une matrice $E_{i,j}$ de la base canonique
- ullet la matrice A est la matrice remplie de 1
- ullet la matrice A est une matrice diagonale.
- 3. Si la matrice A est semblable à une matrice $B\in \mathcal{M}_n(\mathbb{C})$, a-t-on $\mu_A(X)=\mu_B(X)$?

_____ 0 ____

Exercice 46

- 1. Montrer que l'ensemble $\mathscr S$ des matrices symétriques et l'ensemble $\mathscr A$ des matrices antisymétriques forment deux sous-espaces vectoriels supplémentaires de $\mathscr M_p(\mathbb C)$.
- 2. Calculer $\dim(\mathscr{S})$ et $\dim(\mathscr{A})$.

Exercice 47

Soit $N \in \mathscr{M}_d(\mathbb{C})$ une matrice triangulaire supérieure à diagonale nulle.

- 1. Montrer que $N^d=0$.
- 2. Montrer que les assertions suivantes sont équivalentes :
 - ullet la matrice N^{d-1} est non nulle
 - \bullet la matrice N est de rang (d-1)
 - $\bullet \ \prod_{k=2}^{a} N_{k-1,k} \text{ est non nul}$
 - \bullet la matrice N est semblable à la matrice $\sum_{k=2}^d E_{k-1,k}$
 - la famille $(N^k)_{0 \leqslant k \leqslant d-1}$ est libre.

Exercice 48

- 1. Montrer que l'ensemble $\mathfrak T$ des matrices triangulaires supérieures forme une sous-algèbre de $\mathcal M_n(K)$. Cette algèbre est-elle commutative? intègre? de dimension finie?
- 2. Soient $T\in\mathfrak{T}$ et $P(X)\in K[X]$. Que peut-on dire des coefficients diagonaux de la matrice P(T)?
- 3. Soit $T\in\mathfrak{T}$ une matrice inversible. Montrer par un calcul matriciel ou par les endomorphismes que $T^{-1}\in\mathfrak{T}$

Exercice 49

Soient $n\in\mathbb{N}^*$ et G un groupe fini de matrices de $(GL_n(\mathbb{C}),\times)$.

- 1. Montrer que la matrice $B=\frac{1}{\operatorname{Card}(G)}\sum_{A\in G}A$ est un projecteur.
- 2. En déduire que $\operatorname{Card}(G)$ divise le nombre $\sum_{A \in G} \operatorname{Tr}(A)$.

Exercice 50

Soient A et B dans $\mathcal{M}_n(\mathbb{R})$. Résoudre l'équation $X+\mathrm{Tr}(X)\cdot A=B$ d'inconnue $X\in\mathcal{M}_n(\mathbb{R})$.

Exercice 51

Soit $A \in \mathcal{M}_3(\mathbb{R})$ telle que $A \neq 0$ et $A^2 = 0$. On pose : $F = \{M \in \mathcal{M}_3(\mathbb{R}) \mid AM + MA = 0\}.$

- 1. Montrer que F est un espace vectoriel.
- 2. Établir l'existence d'une matrice $P\in GL_3(\mathbb{C})$ telle $\operatorname{que}: P^{-1}AP = \left(\begin{array}{ccc} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right) = A'.$
- 3. En déduire $\dim F$.

6

Exercice 52

Soit A une matrice dans $\mathcal{M}_n(\mathbb{C})$ telle que pour tout $i \in \llbracket 1, n \rrbracket$:

$$|A_{i,i}| > \sum_{j \neq i} |A_{i,j}|.$$

_ _ _ _

- 1. Montrer que $Ker(A) = \{0\}$.
- 2. En déduire que A est inversible.

Un peu plus difficile

Exercice 53

1. On se donne deux suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ telles que :

$$\left\{\begin{array}{ll} u_0=1 \\ v_0=-1 \end{array}\right. \text{ et } \forall n \in \mathbb{N}, \ \left\{\begin{array}{ll} u_{n+1}=u_n+2v_n \\ v_{n+1}=2u_n+v_n \end{array}\right..$$

Déterminer les formules exprimant u_n et v_n en fonction de n.

2. On se donne d suites $(w_{n,k})_{n\in\mathbb{N}}$ pour $k\in [\![1,d]\!]$ définies par :

$$\left\{ \begin{array}{l} w_{0,1} = 1 \text{ et } \forall k \in [\![2,d]\!], \ w_{0,k} = 0 \\ \\ \forall n \in \mathbb{N}, \ \forall k \in [\![1,d]\!], \ w_{n+1,k} = \frac{1}{d-1} \sum_{j=1, j \neq k}^d w_{n,j} \end{array} \right..$$

Étudier le comportement des suites $(w_{n,k})_{n\in\mathbb{N}}$.

Exercice 54

- 1. Montrer que tout hyperplan de $\mathcal{M}_n(K)$ contient au moins une matrice inversible.
- 2. Montrer que les seuls automorphismes de l'algèbre $\mathcal{M}_n(\mathbb{C})$ sont les applications $M \longmapsto P^{-1}MP$, avec P inversible.

Exercice 55

Soient a_1, \dots, a_{13} treize entiers entre 1 et 40. Montrer qu'il existe un 13-uplet d'entiers $(\alpha_1, \dots, \alpha_{13})$ non tous nuls tel

$$\operatorname{que}: \prod_{k=1}^{13} a_k^{\alpha_k} = 1.$$

Exercice 56

- 1. Soit $n\geqslant 3$. On appelle matrice harmonique dans $\mathcal{M}_n(\mathbb{R})$, toute matrice dont chaque coefficient intérieur à la matrice est la moyenne arithmétique des quatre coefficients qui lui sont adjacents.
 - (a) L'ensemble des matrices harmoniques forme-t-il un espace vectoriel?
 - (b) Existe-t-il deux matrices harmoniques différentes ayant le même bord?

- 2. Soit a une suite dans $\mathbb{R}^{\mathbb{Z}^2}$ telle que pour tous i,j dans \mathbb{Z} :
 - $a_{i,j} = \frac{a_{i-1,j} + a_{i+1,j} + a_{i,j-1} + a_{i,j+1}}{4}$
 - $a_{i,j} \geqslant 0$.

Montrer que la suite a est constante.

Exercice 57

1. Montrer que le rang d'une matrice est la taille maximale de ses sous-matrices carrées inversibles.

- 0 -

2. Soit V un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{C})$ tel que : $\forall M \in V, \operatorname{Rg}(M) \leq p$. Montrer que $\dim(V) \leq np$.

Exercice 58

Soient A_1, \cdots, A_n n matrices nilpotentes dans $\mathcal{M}_n(\mathbb{C})$ commutant deux à deux. Montrer que $A_1 \times \cdots \times A_n = 0$.

Exercice 59

Soit $A \in GL_n(\mathbb{C})$. Montrer qu'il existe deux matrices triangulaires supérieures T_1 et T_2 , puis P une matrice de permutation telles que :

$$A = T_1 P T_2.$$

____ o ___

Exercice 60

Déterminer tous les sous-espaces de $\mathcal{M}_{n,1}(\mathbb{R})$ stables par toutes les matrices de permutation.

____ 0 ___