Travaux dirigés sur les groupes – corrigé –

Problème : actions de groupes

Partie I: quelques exemples

1. action du groupe symétrique

(a) On vérifie facilement que si $k \in X$ et si σ_1 et σ_2 sont dans S_n , alors :

$$\sigma_1 \circ \sigma_2(k) = \sigma_1(\sigma_2(k))$$
 et $\mathrm{id}_X(k) = k$.

(b) On montre que $\mathscr{O}(k) = X$.

En effet, l'inclusion directe est évidente.

Soit maintenant $\ell \in X$. Si $\ell = k$, alors $\ell = \operatorname{id}_X \cdot k \in \mathcal{O}(k)$ et si $\ell \neq k$, en notant $\sigma = (k, \ell)$ la permutation échangeant k et ℓ , alors $\sigma \cdot k = \ell \in \mathcal{O}(k)$.

(c) Il est facile de voir que :

$$\operatorname{Stab}(k) = \left\{ \sigma \in S_n \mid \sigma(k) = k \right\}.$$

L'application:

$$\Phi: \left| \begin{array}{ccc} \operatorname{Stab}(k) & \longrightarrow & S_{X\setminus\{k\}} \\ \sigma & \longmapsto & \sigma_{|X\setminus\{k\}} \end{array} \right|$$

est une bijection d'application réciproque :

$$\Psi: \left| \begin{array}{ccc} S_{X\backslash\{k\}} & \longrightarrow & \operatorname{Stab}(k) \\ \rho & \longmapsto & \rho: \left| \begin{array}{ccc} X & \longrightarrow & X \\ \ell & \longmapsto & \left\{ \begin{array}{ccc} \sigma(\ell), & \text{si } \ell \in X \setminus \{k\} \\ k, & \text{si } \ell = k \end{array} \right. \end{array} \right. \right.$$

On en déduit :

$$\left| \operatorname{Stab}(k) \right| = \left| S_{X \setminus \{k\}} \right| = (n-1)!.$$

- 2. action du groupe sur lui-même par translation
 - (a) Il est facile de voir que pour tous g_1 et g_2 dans G et pour tout $x \in G$,

$$g_1 \star (g_2 \star x) = (g_1 \star g_2) \star x$$
 et $e \star x = x$.

(b) On montre que $\mathscr{O}(x) = G$.

L'inclusion directe est évidente.

Réciproquement, soit $y \in G$. En posant :

$$g = y \star x^{-1}$$
, alors $g \cdot x = y \in \mathcal{O}(x)$.

3. action du groupe sur lui-même par conjugaison

Il est facile de voir que pour tous g_1 et g_2 dans G et pour tout $x \in G$, alors :

$$(g_1 \star g_2) \star x \star (g_1 \star g_2)^{-1} = g_1 \star (g_2 \star x \star g_2^{-1}) \star g_1^{-1}$$

et :
$$e \star x \star e^{-1} = x$$
.

Partie II: quelques propriétés générales

- 4. On vérifie que :
 - \longrightarrow le stabilisateur Stab(x) est inclus dans G, qui est un groupe pour \star
 - $\longrightarrow e \cdot x = x$, donc $e \in \operatorname{Stab}(x)$
 - \longrightarrow pour tous q et h dans Stab(x), on a :

$$(g_1 \star g_2^{-1}) \cdot x = g_1 \cdot (g_2^{-1} \cdot x)$$

$$= g_1 \cdot \left(g_2^{-1} \cdot (g_2 \cdot x)\right)$$

$$= g_1 \cdot \left(\left(g_2^{-1} \star g_2\right) \cdot x\right)$$

$$= g_1 \cdot (e \cdot x)$$

$$= g_1 \cdot x = x.$$

On en déduit que $g_1 \star g_2^{-1} \in \operatorname{Stab}(x)$.

- 5. (a) La relation est réflexive en prenant g = e.
 - La relation est symétrique que si $x\mathcal{R}y$, on écrit $x=g\cdot y$, pour un certain élément $g\in G$.

On en déduit :

$$g^{-1} \cdot x = g^{-1} \cdot (g \cdot y) = e \cdot y = y,$$

et donc $y\mathscr{R}x$ car $g^{-1} \in G$.

• La relation est transitive car si $x\mathcal{R}y$ et $y\mathcal{R}z$, on écrit :

$$\begin{cases} x = g \cdot y \\ y = h \cdot z \end{cases}, \text{ donc } x = (g \star h) \cdot z,$$

avec g et h dans G, donc également $g \star h$.

(b) Soit $x \in X$. On montre que l'orbite $\mathcal{O}(x)$ est exactement la classe d'équivalence de l'élément x pour cette relation \mathcal{R} .

En effet, si $y \in \mathcal{O}(x)$, il existe $g \in G$ tel que $y = g \cdot x$, donc $y \mathcal{R} x$ et l'élément y appartient à la classe d'équivalence de x.

Si y appartient à la classe d'équivalence de x, alors $y\mathscr{R}x$ et il existe $h \in G$ tel que $y = h \cdot x \in \mathscr{O}(x)$.

On sait finalement que l'ensemble des classes d'équivalence partitionne l'ensemble X.

(c) On suppose le groupe G fini. Soit un élément x dans X.

Le sous-groupe $\operatorname{Stab}(x)$ est un sous-groupe de G, donc est également fini.

Par le théorème de Lagrange, en notant $\mathscr S$ la relation sur G :

$$\forall (g,h) \in G^2, \ g \mathscr{S} h \iff \exists s \in \operatorname{Stab}(x), \ g = h \star s,$$

alors la relation $\mathcal S$ est une relation d'équivalence. De plus, pour tout $g\in G$, la classe d'équivalence pour cette relation est l'ensemble :

$$g\mathrm{Stab}(x) = \Big\{g \star s \; ; \; s \in \mathrm{Stab}(x)\Big\}.$$

Cet ensemble est en bijection avec l'ensemble $\operatorname{Stab}(x)$, via la translation à gauche bijective : $s \longmapsto g \star s$.

Il y a donc exactement:

$$\frac{|G|}{|\operatorname{Stab}(x)|} = q$$

classes d'équivalence, que l'on note $[g_1], \dots, [g_q]$.

Il s'agit maintenant de montrer que l'orbite $\mathscr{O}(x)$ compte exactement q éléments.

L'application:

$$\chi: \left| \begin{array}{ccc} \llbracket 1, q \rrbracket & \longrightarrow & \mathscr{O}(x) \\ i & \longmapsto & g_i \cdot x \end{array} \right|$$

est déjà bien définie car si g_i et g_i^\prime représentent la même classe $[g_i],$ alors :

$$g_i \mathscr{S} g_i'$$

et il existe $s \in \operatorname{Stab}(x)$ tel que $g_i = g'_i \star s$.

On en déduit :

$$g_i \cdot x = (g'_i \star s) \cdot x = g'_i \cdot (s \cdot x) = g'_i \cdot x.$$

La définition est bien consistante.

Ensuite, l'application χ est injective. En effet, si i et j sont deux entiers entre 1 et q tels que :

$$\chi(i) = \chi(j),$$

alors $g_i \cdot x = g_j \cdot x$, puis en composant à gauche par g_i^{-1} :

$$(g_j^{-1} \star g_i) \cdot x = e \cdot x = x.$$

L'élément $s = g_j^{-1} \star g_i$ est dans Stab(x). L'écriture :

$$g_i \star s = g_i$$

montre que $g_i \mathscr{S} g_j$, puis $[g_i] = [g_j]$ et bientôt i = j.

Enfin, l'application χ est surjective. En effet, soit y dans $\mathscr{O}(x)$. Il existe $g \in G$ tel que :

$$g \cdot x = y$$
.

La classe [g] est l'une des classes $[g_1], \dots, [g_q]$. On pose :

 $[g] = [g_i]$, pour un certain entier i entre 1 et q.

Comme $g\mathscr{S}g_i$, il existe $s\in\operatorname{Stab}(x)$ tel que $g=g_i\star s$. On en déduit :

$$g \cdot x = g_i \cdot (s \cdot x) = g_i \cdot x.$$

Conclusion, $\chi(i) = y$.

Par bijectivité de l'application χ ,

$$\left| \mathscr{O}(x) \right| = q = \frac{|G|}{|\operatorname{Stab}(x)|}.$$

Partie III : équation aux classes

6. En utilisant la question **5.(b)**, il suffit de prendre le cardinal de la réunion disjointe des orbites, puis de séparer les orbites réduites à un singleton et les autres, via l'équivalence :

$$\forall x \in X, \ \left| \mathscr{O}(x) \right| = 1 \iff x \in \text{Fix}(G).$$

7. Il s'agit de l'action triviale :

$$(g,x) \longmapsto x.$$

En effet, en utilisant les notations de la question précédente, d'après la question $\mathbf{Q.5.(c)}$, chaque cardinal $|\mathscr{O}(x_i)|$ est un entier supérieur ou égal à 2 qui divise |G|=833. Comme la décomposition en facteurs premiers de 833 est :

$$833 = 7^2 \times 17$$

alors chaque terme de la somme $\sum_{i} |\mathcal{O}(x_i)|$ est à la fois supérieur ou égal à 7 et inférieur au cardinal de X: ceci est rigoureusement impossible.

Tout ceci pour dire que la somme $\sum_i \left| \mathscr{O}(x_i) \right|$ est vide et :

$$Fix(G) = X$$
, puis $\forall g \in G$, $\forall x \in X$, $g \cdot x = x$.

8. On utilise l'action du groupe G sur lui-même par conjugaison, conformément à la question $\mathbf{Q.3}$.

Les éléments du centre Z(G) sont exactement les éléments de Fix(G) car pour tout $g \in G$, on a les équivalences :

$$g \in Z(G) \iff \forall h \in G, \ h \star g = g \star h$$
$$\iff \forall h \in G, \ h \star g \star h^{-1} = g$$
$$\iff \forall h \in G, \ h \cdot g = g.$$

Or, chaque terme $|\mathcal{O}(x_i)|$ de la deuxième somme est un diviseur supérieur à 2 de |G|, donc est un entier multiple de p.

Conclusion, le centre de G dont on sait qu'il s'agit d'une sous-groupe de G ne peut être réduit à $\{e\}$ car tous les termes |X| = |G| et $\sum_i \left| \mathscr{O}(x_i) \right|$ sont multiples de p, donc

|Fix(G)| = |Z(G)| est également un multiple de l'entier p.

9. Soit q dans G. On montre l'égalité :

$$gZ(G) = Z(G)g$$

par double inclusion.

Soit a un élément de l'ensemble de gauche. Il existe $h \in Z(G)$ tel que :

$$a = g \star h$$
.

Ainsi, $a = h \star g \in Z(G)g$.

L'autre inclusion est aussi immédiate.

10. Soient g_1, g'_1, g_2 et g'_2 quatre éléments dans G tels que :

$$g_1Z(G) = g_1'Z(G)$$
 et $g_2Z(G) = g_2'Z(G)$.

Alors, comme $g_1 = g_1 \star e \in g_1 Z(G)$, il existe $h_1 \in Z(G)$ tel que $g_1 = g_1' \star h_1$.

De même, il existe $h_2 \in Z(G)$ tel que $g_2 = g_2' \star h_2$.

On en déduit :

$$(g_1 \star g_2) Z(G) = (g'_1 \star h_1 \star g'_2 \star h_2) Z(G)$$

$$= (g'_1 \star g'_2) \Big((h_1 \star h_2) Z(G) \Big), \text{ car } h_1 \text{ et } h_2 \text{ commutent avec tout}$$

$$= (g'_1 \star g'_2) Z(G), \text{ par bijectivit\'e sur } Z(G) \text{ de } a \longmapsto (h_1 \star h_2) \star a.$$

L'application ∇ est donc bien définie, la formule proposée ne dépendant pas des représentants choisis dans les ensembles gZ(G).

L'application ∇ est bien une LCI sur G/Z(G).

Ensuite, on voit que ∇ est associative, par associativité de \star sur G. Elle admet un neutre : Z(G) = eZ(G).

Enfin, tout élément est symétrisable, car :

$$\forall g \in G, \ gZ(G)\nabla g^{-1}Z(G) = eZ(G) = g^{-1}Z(G)\nabla gZ(G).$$

Pour tout $g \in G$, le symétrique de gZ(G) est $g^{-1}Z(G)$.

11. Soit H un groupe de cardinal q, où q est un nombre premier. Soit $x \in H \setminus \{e\}$. Le sous-groupe $\langle x \rangle$ engendré par x est de cardinal au moins 2 car ce sous-groupe contient au moins e et x et par le théorème de Lagrange, son cardinal divise q, qui est premier, donc vaut q. L'inclusion

$$\langle x \rangle \subset H$$

couplée avec l'égalité des cardinaux finis donne l'égalité.

L'élément x est d'ordre q et l'application :

$$\Phi: \left| \begin{array}{ccc} \mathbb{Z}/q\mathbb{Z} & \longrightarrow & H \\ \dot{k} & \longmapsto & x^k \end{array} \right|$$

est bien définie car si $\dot{k} = \dot{\ell}$, alors q divise $k - \ell$ et $x^k = x^\ell$ car $x^q = e$.

Ensuite, on voit assez facilement que l'application Φ est un morphisme de groupes entre $(\mathbb{Z}/q\mathbb{Z}, +)$ et (H, \star) et que c'est injectif, par définition de l'ordre q de l'élément x. Enfin, par égalité des cardinaux finis entre $\mathbb{Z}/q\mathbb{Z}$ et H, l'application Φ est une bijection.

12. Soit G un groupe de cardinal p^2 .

Le centre Z(G) est de cardinal divisant p^2 et n'est pas égal à 1. On distingue deux cas :

- \longrightarrow si Z(G) est de cardinal p^2 , alors Z(G) = G et G est directement abélien
- \longrightarrow si Z(G) est de cardinal p, alors l'ensemble G/Z(G) est aussi de cardinal p, donc est cyclique puis abélien. Choisissons un élément $x \in G \setminus Z(G)$.

Le stabilisateur de x vis-à-vis de l'action de conjugaison est un sous-groupe de G qui contient Z(G) et x, donc est de cardinal strictement supérieur à p et divise p^2 . Ainsi,

$$Stab(x) = G$$

et pour tout $g \in G$, $g \star x \star g^{-1} = x$, donc $g \star x = x \star g$, ce qui montre que l'élément x appartient au centre Z(G), ce qui est contraire au choix de x. Ce cas ne se produit jamais.

Dans le seul cas possible, le groupe G est abélien.